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ABSTRACT

Fair recommender systems help to prevent the exclusion of marginal-
ized communities that biased systems create. Two approaches have
been considered to build recommender systems with fair output.
One method is to consider fairness in the algorithm that creates
the recommendation. The more common approach, because of its
practical advantages, is to rerank the results after optimizing the
recommendations for accuracy. When reranking is used, generally
it is applied to the output of an existing algorithm that has been
tuned to maximize its accuracy. In this paper, we explore whether
better fairness / accuracy trade-offs are available through joint opti-
mization of a recommendation algorithm and its reranker. We show
that for some applications, the difference between joint optimiza-
tion and reranking after optimization is negligible, with neither
method showing a clear advantage.
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1 INTRODUCTION

Recommendation systems are increasingly ubiquitous with almost
no facet of modern society left untouched by the decisions these
algorithms make. As these systems become more prevalent, their
use has broadened beyond areas of consumer taste to areas of
greater impact such as housing, employment, and financial services.

This expansion has increased scrutiny of the social impacts from
recommender systems. In addition, the scope of recommender sys-
tem applications includes areas where non-discrimination is legally
mandated, to ensure that people are not denied certain benefits on
the basis of protected characteristics.

In order to achieve fairer outcomes in recommender systems,
a wide variety of techniques have been proposed. These fall into
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two main categories: modifying or creating new algorithms that
take into account fairness during the recommendation process, or
using existing algorithms and reranking their results to improve fair-
ness. See [6] for a survey of issues and techniques in recommender
systems fairness.

In this paper, we explore this second option, where a base al-
gorithm produces results, and a reranker re-sorts and filters them
to produce the final output that the user sees. General practice
in reranking is to treat the two steps as independent, letting the
base algorithm produce the best recommendations it can based on
accuracy criteria, and then applying the reranker to whatever is
produced. There are practical advantages to reranking, as it is inde-
pendent of the recommendation algorithm used and can be tuned
to achieve different fairness / accuracy trade-off (even dynamically
as in [15]).

There is another option, however, and that is to treat the base
algorithm plus reranker as a single system for the purposes of
optimization. This option has not been explored in the literature
and it is the one that we investigate here.

2 OPTIMIZING FOR FAIRNESS

Like other machine learning algorithms, recommendation algo-
rithms have a number of hyperparameters that control the learning
process which must be set by the experimenter before training
can take place. Typical examples of hyperparameters are the learn-
ing rate, the weight associated with a regularization term(s), or
stopping criteria. In matrix factorization algorithms, the number
of latent factors is a key hyperparameter. In neural networks, hy-
perparameters can include the number of layers, their sizes, and
activation functions.

Determining the performance of a recommendation algorithm
requires not just training it and evaluating the resulting model,
but also selecting appropriate hyperparameters, often through ex-
tensive experimentation. Hyperparameters can be chosen through
systematic exploration of the entire space (grid search) or in one
of several algorithmic methods. In this paper, we concentrate on
Bayesian black-box optimization BBO [18]. The basic concept of
BBO is to treat the results of experiments as samples conditioned
on the hyperparameters and to use Bayesian statistics to locate the
parameters that supply the best experimental result with highest
probability. For our experiments, we used the Tree of Parzen Es-
timators (TPE) method implemented in the Optuna library [3] as
integrated into the librec-auto recommender systems experimenta-
tion platform [14, 17]. !

We can think of BBO as a function that applies to a parame-
terized algorithm f(D, 0), where D is some training data and 0

!https://github.com/that-recsys-lab/librec-auto
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is a vector representing the hyperparameters of the algorithm. A
BBO algorithm then is a function BBO(f, D, e) — 0* that discovers
the optimal parameters 0* for f as applied to D relative to some
criterion e.

Let B be a base algorithm with hyperparameters 6g and C be
a reranking algorithm with hyperparameters 6c. We can perform
two separate optimizations g = BBO(B, D, eg) and then 0 =
BBO(B, B(D, 6p), ec). Note that the input of the reranker is the
output of the recommendation algorithm as learned from the data.)
We assume the existence of different criteria for accuracy eg (ignor-
ing fairness) and fairness ec. An alternative is to treat the entire
process as a single joint optimization on the composed system.
(0B, 0c) = BBO(C(B), D, ej) where e; is some joint criterion tak-
ing both accuracy and fairness.

The key question of this research is to compare these two ap-
proaches. What are the differences between the current practice
(separate optimization) and the joint optimization method? We
might expect the joint optimization to perform better since holistic
methods usually do work better than greedy ones, but if so how
much better, and is it worth the extra effort of combining the opti-
mizations? Note that with the joint method, we are losing one key
advantage of reranking, which is the independence of the reranking
process from the base algorithm.

3 ALGORITHMS

We test our hypothesis on a range of different (base) recommenda-
tion algorithms and rerankers as discussed below.

3.1 Recommendation algorithms

There are dozens of recommendation algorithms to choose from in
performing a study of this nature. Our aim was to select algorithms
that covered a range of different underlying recommendation logics
and with different fairness characteristics. The first, biased matrix
factorization (BMF), is a well-known algorithm that represents the
user-ratings matrix as a product of lower-dimensional matrices
characterized by the interaction between latent factors [2]. This
variation on the factorization technique is characterized by the
isolation of separate item and user biases for each item and user,
respectively, that are learned independently of the latent factors,
yielding a prediction function of the following form:

k
Fij :0i+Pj+Zuis*Ujs
s=1
where o; is the bias associated with user i and p; is the bias associ-
ated with item j; u; are the user latent factors and v; are the item
latent factors.

BMEF uses rating prediction as its definition of loss and seeks to
derive latent factors (and biases) that minimize the error on predic-
tions across the dataset. An alternative type of loss function is one
that is aimed at optimizating the ranking performance: the ability of
the system to rank preferred items ahead of less-preferred ones. In
this setting, we care less about the numerical prediction values and
more about the system’s discrimination ability. Bayesian Person-
alized Reranking (BPR) is a well-known algorithm for optimizing
ranking accuracy [11]. It is based on the loss function
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loss= > In(0(fui - §uj)) = Agll®II (1)
(u,i,j) €D
where the i’s are items liked by the user and j’s are not. The last
term serves to regularize the expression.

Finally, our third method is one that uses a neighborhood-based
approach that is among the oldest in recommender systems. The
Sparse Linear Method (SLIM) [9] is a generalization of kNN methods.
It treats recommendation as a sparse regression problem over the
user-item rating matrix.

minimize 3|4~ AW+ Biwiz + Awiny

subjectto W > 0 and diag(W) =0

The last two terms in the objective function represent the elastic-
net regularizer, which combines L1 and L2 regularization, where
||W]| represents the L2 norm and ||W||; the L1 norm.

3.2 Reranking algorithms

Due to space limitations, we chose only to evaluate two rerank-
ing algorithms in our experiments. The first is FAR, introduced in
[8]. FAR is an extension of EXplicit Query Aspect Diversification
(xQuAD) algorithm from information retrieval [12]. The intent of
xQuAD was to ensure that results delivered to the user accounted
for all aspects of a query. FAR sought similar diversification but on
behalf of protected group items. We use a proportional (rather than
binary version of FAR) as described in [1]. FAR could be described
a “score-based” approach to reranking in that it boosts the score of
protected group items and then re-sorts the recommendation list
with updated scores.

Our second reranking algorithm FA*IR [19] is quite different.
The FA’IR algorithm divides item into two groups: one group of
non-protected items and one group of protected items. Each group
is ordered based on the preference computed by the recommender
system. The algorithm then performs a search over the choices
of possible inclusion of items from each group trying to maintain
ranking accuracy while fairly distributing items over the ranking.

4 APPLICATION: FAIRNESS IN
MICROLENDING

Kiva.org is an online micro-finance site designed to allow individu-
als to provide help to those in underserved regions. Kiva aggregates
loan requests from field partners around the world who lend small
amounts of money to entrepreneurs in their local communities.
Loans are funded interest-free by Kiva’s members, largely in the
United States.

4.1 Data Set

We were able to obtain a proprietary dataset from Kiva.org, which
contains all lending transactions for the year 2017. The original
dataset contained roughly 1 million transactions involving around
120,000 loans and 200,000 Kiva users. However, as noted in [16],
transformations were required to make the set usable for collabora-
tive recommendation.

Unlike many common datasets, which contain items that can be
used or viewed an indefinite number of times, a loan disappears
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from Kiva.org once it is funded and is not available for subsequent
lenders to view or support, even if they would have liked to. The
maximum profile for any loans in our dataset was 330 lenders, with
a typical value around 10. In contrast, a popular movie in a movie
dataset might be rated by thousands of users. As a result, borrower
relation is highly sparse, and loans have very small profiles, making
traditional collaborative filtering approaches ineffective.

To counter this problem, we created a version of the dataset in
which individual loan items are replaced by pseudo-items, items
representing clusters of items with similar properties. User profiles
can then be expressed in terms of these pseudo-items instead of the
original items, resulting in a denser dataset. Because this dataset
is planned for public release, we also normalized the users’ loan
contributions around each user’s mean loan contribution. Thus, it
is not possible to associate a specific loan amount with a particular
supported loan. We also applied a 10-core transform to the final
dataset to ensure there was sufficient data about each user and each
item. The final dataset has 2,673 pseudo-items, 4,005 lenders and
110,371 ratings / lending actions.?

4.2 Fairness

Recognizing that fairness is a complex concept, which is likely to
be defined in different ways in different contexts, we follow [5],
in defining a fairness concern as a specific type of fairness being
sought, relative to a particular aspect of recommendation outcomes,
evaluated in a particular way. In this work we concentrate on pro-
moting (as is generally the case in fairness-aware recommendation)
a single fairness concern at a time, although within the Kiva dataset
there are multiple fairness concerns that could arise. Earlier re-
search [16] identified country, economy sector, and loan size as
dimensions along which fairness in lending may need to be sought.
In this work, we report on results for loan size and country. Kiva’s
internal research has found that loans to larger groups (rather than
individuals) are more effective at promoting economic develop-
ment, and that such loans are less likely to receive lender attention.
Therefore, in these experiments, we make use of the loans with the
largest dollar value ($5,000 and up) as a protected group and seek
to increase their representation in the recommendation results.

Kiva’s mission is “global financial inclusion” and therefore en-
suring equity in the geographic distribution of capital is another
important fairness concern. Although most loans in Kiva’s system
do eventually get funded (around 85%), the length of time that a
loan remains in the system is an important variable. If a loan is
funded slowly, it takes longer for the borrower to get their funding
and the loan occupies space in the Kiva system. Also, there is the
chance that the loan will not be funded at all and lenders have
to re-engage with the system in order to choose a different loan
to support. For this reason, we calculate Percentage Funding Rate
(PFR) for each loan:

PFR = @)

2By the time of publication, we plan to have a public release of this transformed version
of Kiva dataset for research use.
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where 7 is the time that the loan was funded (or the maximum
tr + 1if it was not funded) and t, is the time that the loan was
posted.

A loan with a high PFR is one that was funded quickly. Since
loans typically have only 30 days to receive funding, the lowest
possible PFR is around 3.33. We identified the 16 countries whose
loans have the lowest PFR scores and labeled these as the protected
group for the purposes of geographic fairness. The aim would be to
recommend loans from these countries more often to try to equalize
PFR values across countries.

Note that we concentrate in this work exclusively on provider-
side fairness as defined in [4]. Borrowers are considered providers in
this system since it is their requests for capital that are being deliv-
ered as recommendations to the users of Kiva’s system. Consumer-
side fairness (concerns directed towards these end users) have not
arisen as a key issue in this application. In general, however, rerank-
ing can be used to increase consumer-side fairness as well and we
intend to explore such applications in future work.

5 METHODOLOGY

Two experiments were conducted: one for each of the protected
features that we considered. For each experiment, three cross-
validation folds were used and the results averaged. All experiments
were run using the open-source librec-auto recommendation plat-
form3. For each combination of algorithm, reranker and protected
feature, we examined the difference between separate optimization
for accuracy and fairness and joint optimization of these charac-
teristics. Each base algorithm produced 50 recommendations for
each user and the rerankers produced 10 items as the final output
list for evaluation.

5.1 Evaluation metrics

We evaluated recommender system performance for both rank-
ing accuracy and fairness. For accuracy, we used Normalized Dis-
counted Cumulative Gain, which values test items more highly if
they appear at higher ranks. Only the top 10 list was evaluated, so
values reported are NDCG@10 throughout.

There are many different ways to evaluate group fairness in a
recommendation context. See [6] for a survey. We have chosen a
very simple provider-side statistical parity (PSP) method looking at
item exposure (also called demographic parity in [13]. We count the
number of protected group items that appear in recommendation
lists and subtract from it the count of unprotected group, then
normalize by the total number of recommendations produced.

The formula for PSP can be represented as

psp=£""

t
where p is the number of protected items, u is the number of un-
protected items, and t represents the total number of items. The
numerical value of PSP will be between 1 and -1, where 0 means
that protected and unprotected groups are equally represented in
the recommendations, 1 represents only protected groups are in
the output, and -1 means no protected groups are represented in
the output.

Shttps://github.com/that-recsys-lab/librec-auto
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For the purposes of this study, we consider a somewhat-arbitrary
10% loss of NDCG to be an acceptable trade-off for increased fair-
ness; this is obviously a very application-specific consideration. This
means that when tuning our reranking algorithm we are seeking the
best fairness (via PSP) that can be achieved without sacrificing more
than 10% of the unreranked NDCG value. For joint optimization,
we constructed a joint optimization function J that is insensitive to
accuracy changes up to 10% but always sensitive to fairness.

J(a, f) = max(0,(a— 0.9 *ap)) + f

where gy is the accuracy of the baseline algorithm.

5.2 Optimization

As indicated above, we compared two different optimization ap-
proaches. For separate optimization, we optimized the algorithms
first for accuracy using nDCG. We ran 50 iterations of the opti-
mizer, which prior experiments had shown were sufficient to settle
on optimal parameters. Then we performed grid search over the
reranking parameter to identify the point of 10% accuracy loss. We
used this method instead of a second round of black-box optimiza-
tion because these rerankers only had a single parameter to tune
and grid search was faster.

Our second approach involved the joint optimization of base
and reranking algorithms as single system. Each iteration of the
optimizer evaluated the whole recommendation pipeline from base
algorithm through the reranker and the parameter of reranker
was included among the optimization variables. The optimization
function J, above, was used to ensure that within 10% loss the
optimizer would only consider fairness. Note that it is one of the
benefits of black-box optimization that the loss function can be
arbitrary.

For BPR, the tuned hyperparameters were user regularization,
item regulartization, the number of factors, and the learning rate.
For BiasedMF, the tuned parameters were learning rate, user regu-
larization, bias regularization, the number of factors, and the maxi-
mum learning rate.The tuned parameters for SLIM were L1 and L2
regularization.

6 RESULTS

The results for Experiment 1 using loan size as the protected feature
are shown in Tables 1 and 2 and in Figure 1a. As we can see, the
two optimization methods are quite comparable. (In some cases,
they overlap and are indistinguishable on the plot.) BPR is clearly
the dominant algorithm, with all of its variants sitting clearly on
the Pareto frontier at the upper right. SLIM does relatively poorly
on accuracy, although its results can be reranked for better fairness.
BMF has results exceeding SLIM, but beneath BPR.

In Experiment 2, with country as the protected feature, BPR re-
tains the best nDCG, but has the lowest fairness, even after rerank-
ing. There is no consistent pattern for any algorithm, with joint
optimization and two-stage reranking once again performing simi-
larly, without a clear dominant performer.

Table 6 characterizes the overall results of these experiments by
averaging the fairness achieved at 10% NDCG loss over the different
rerankers. It is not a consistent picture. Seperate optimization is
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Separate Joint
Baseline | FA'IR | FAR | FA'IR | FAR
BPR 0.0658 | 0.0596 | 0.0595 | 0.0593 | 0.0642
BMF | 0.0325 | 0.0341 | .0330 | 0.2920 | 0.0312
SLIM | 0.0167 .0160 | 0.0161 | 0.0159 | 0.0150
Table 1: NDCG Results for Experiment 1: Protected feature =
loan size

Separate Joint
Baseline | FA'IR | FAR | FA'IR | FAR
BPR -0.828 -0.603 | -0.328 | -0.340 | -0.512
BMF -.628 0.106 | 0.107 | -0.581 | -0.269
SLIM -0.773 -0.094 | -0.094 | -0.345 | -0.043
Table 2: PSP Results for Experiment 1: Protected feature =
loan size

Separate Joint
Baseline | FAIR | FAR | FA'IR | FAR
BPR 0.0658 | 0.0596 | 0.0642 | 0.0598 | 0.0594
BMF 0.0325 | 0.0341 | 0.031 | 0.0292 | 0.0291
SLIM | 0.0167 | 0.0168 | 0.0164 | 0.0159 | 0.0153
Table 3: NDCG Results for Experiment 2: Protected feature =
Country

Separate Joint
Baseline | FA'IR | FAR | FA'IR | FAR
BPR -0.965 -0.603 | -0.512 | -0.610 | -0.640
BMF -0.727 -0.306 | -0.302 | -0.595 | -0.202
SLIM | -0.719 | -0.208 | -0.141 | -0.345 | -0.202
Table 4: PSP Results for Experiment 2: Protected feature =
Country

generally better, but there are algorithm / dataset combinations in
which it is worse. None of the differences are very large.

It should be noted that joint optimization was a considerably
more time intensive process than the both processes independently.
While exact computational times were not recorded, it was not
uncommon for joint optimization to take as much as 3 or four times
as long to execute relative to the reranking after-the-fact approach.
Our results suggest that this extra time is probably not worthwhile.

7 RELATED WORK

Fairness in recommender systems has been the subject of consid-
erable research attention over the past five years. A variety of
models and reranking methods have been proposed and evaluated
as detailed in [6]. This field has also intersected with research in
information retrieval and fairness in ranking systems that used in
other settings, for example, non-personalized lists of job candidates
in algorithmic hiring. See the survey in [20].
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Figure 1: Ranking accuracy vs fairness

Loan Size Country
Separate | Joint | Separate | Joint
BPR -0.466 -0.426 -0.558 -0.635
BMF 0.107 | -0.425 | -0.304 | -0.399
SLIM -0.094 -0.194 -0.175 -0.274
Table 5: PSP Averages for Protected Features by Method

Loan Size Country
Separate | Joint | Separate | Joint
BMF | +0.361 | +0.381 +0.407 +0.330
BPR | +0.834 | +0.302 | +0.423 | +0.328
SLIM | +0.679 +0.679 +0.544 +0.445

Table 6: Average gain in fairness

Obviously, our work here only touches on a few of the many
approaches to fairness-aware reranking that have been explored in
the literature. We concentrate on FAR [8] and FA*IR [19] because
these are algorithms with very different approaches to the rerank-
ing problem. FAR uses simple re-scoring of results to promoted
protected group items; FA*IR handles protected and unprotected
items separately using search to create lists that satisfy a more
stringent fairness constraint.

We use as baseline algorithms three well-studied recommenda-
tion algorithms: BPR [11], Biased Matrix Factorization [2] and SLIM
[9]. These approaches were chosen because they cover a range of
different underlying algorithmic concepts. Matrix factorization opti-
mizes for prediction error, BPR optimizes for ranking loss, and SLIM
uses an instance-based approach. These approaches are known to
have different characteristics with respect to popularity bias and
recommendation diversity, and those characteristic emerge in their
interaction with the rerankers, with each base algorithm yielding
vastly different NDCG values and more limited variations in PSP.

The Optuna implementation used here is just one method for
automated exploration of the hyperparameter space of learning
algorithms. Another recent development is the emergence of the
AutoML technique [7], which can be applied to a more general class
of problems, including neural architecture search and search over
different algorithm types.

8 CONCLUSIONS AND FUTURE WORK

In this work, we have found no major differences in accuracy or
fairness between reranking after optimizing for accuracy and joint
optimization. Neither approach had a consistent advantage, mean-
ing that either approach is acceptable if the primary goal is to
minimize the fairness/accuracy trade-off. However, there are dis-
tinct advantages to each approach: for instance, reranking alone
preserves the independence of the base algorithm results while
offering a substantial computational time benefit. joint optimiza-
tion allows for results from a greater search space as well as the
potential of the integrated reranker to enhance results.

The results presented here concentrate exclusively on the Kiva
dataset. This is an important application of recommendation, but it
has some characteristics that set it apart from other applications in
which recommender systems are commonly deployed, including
streaming media, e-commerce and social media. In our future work,
we plan to extend our study to additional datasets where provider-
side fairness concerns arise.

As noted above, our work here has addressed provider-side fair-
ness exclusively, looking at two different aspects of borrowers:
loan amount and geographic location. In other recommender sys-
tems applications, for example, recommending jobs to job seekers,
consumer-side fairness may be important. Some types of reranking
algorithms, for example [10], have been employed in such settings,
and we intend to explore whether the findings here translate to
consumer-side fairness as well.

With regards to the joint optimization problem, it may be worth
exploring further combinations of combined objective functions.
10% is low accuracy cost, but for some applications a smaller value
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might be desireable. Some of our preliminary research with Kiva
suggests that, for their application, the threshold might be higher.
We are also interested in exploring alternative formulations of the
joint objective, for example multiplicative ones.

It is clear that our work here has surveyed only a small subset
of the available algorithms, both for recommendation generation
and for fairness-aware reranking. In our future work, we plan to
expand the scope of our study to include additional algorithms in
each category. Little work has been done on studying the fairness
properties of recommendation algorithms using neural models and
these would be obvious targets for future study.

We note also that reranking is not the only route to fairness-
aware recommendation and that there is considerable literature
on incorporating fairness objectives into recommendation models
themselves. A natural extension of the research presented here is to
explore whether such models can be optimized to provide a better
combination of fairness and accuracy than a two-stage reranking
pipeline. This question has not been thoroughly explored in the
literature as most researchers have concentrated on one approach or
the other. The combination of such fairness-aware recommendation
models with reranking is yet another approach to consider. It is
possible that joint optimization in such a pipeline might enable the
placement of protected items into the initial round of results so that
the reranker has better items to choose from.
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